
In-depth Weaknesses Documentation
1. Weakness Overview

Title Example SQL Injection in Login Form

Identifier WEAK-2024-001

Date Detected 2024-06-01

Detected By John Doe

Severity High

Status Open

2. Description
The login form on the application does not sanitize user input before passing it to the SQL query, allowing
attackers to inject arbitrary SQL statements. This could lead to unauthorized access, data leakage, or
modification of database records.

3. Technical Details
Vulnerable Endpoint: /login
Request Method: POST
Payload Example: username=admin' -- &password=irrelevant
Affected Parameter(s): username
Affected Component: Authentication

4. Proof of Concept (PoC)
POST /login HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
username=admin' -- &password=irrelevant

The above payload logs into the application as "admin" without providing a valid password, demonstrating
successful exploitation.

5. Impact
Unauthorized data disclosure and access
Potential data modification or deletion
Privilege escalation
Complete compromise of affected database

6. Mitigation & Recommendations
Implement parameterized SQL queries for all database access
Input validation and sanitization on server-side
Conduct code review of authentication modules

Apply database permissions to limit access

7. References
CWE-89: Improper Neutralization of Special Elements used in an SQL Command

Important Notes
Thorough documentation helps prioritize and remediate risks effectively.
Always keep information accurate, actionable, and updated as the issue evolves.
Include enough context for technical and non-technical stakeholders.
Store documents in a secure, access-controlled location.

	In-depth Weaknesses Documentation
	1. Weakness Overview
	2. Description
	3. Technical Details
	4. Proof of Concept (PoC)
	5. Impact
	6. Mitigation & Recommendations
	7. References
	Important Notes

