In-depth Weaknesses Documentation

1. Weakness Overview

Title Example SQL Injection in Login Form
Identifier WEAK-2024-001

Date Detected 2024-06-01

Detected By John Doe

Severity High

Status Open

2. Description

The login form on the application does not sanitize user input before passing it to the SQL query, allowing
attackers to inject arbitrary SQL statements. This could lead to unauthorized access, data leakage, or
modification of database records.

3. Technical Details

e Vulnerable Endpoint: /1ogin

Request Method: POST

Payload Example: username=admin' -- &password=irrelevant

Affected Parameter(s): username

Affected Component: Authentication

4. Proof of Concept (PoC)

POST /login HTTP/1.1

Host: example.com

Content-Type: application/x-www-form-urlencoded
username=admin' -- &password=irrelevant

The above payload logs into the application as "admin" without providing a valid password, demonstrating
successful exploitation.

5. Impact

e Unauthorized data disclosure and access
e Potential data modification or deletion
® Privilege escalation

e Complete compromise of affected database

6. Mitigation & Recommendations
e Implement parameterized SQL queries for all database access
e [nput validation and sanitization on server-side

o Conduct code review of authentication modules



e Apply database permissions to limit access

7. References

e CWE-89: Improper Neutralization of Special Elements used in an SQL Command

Important Notes

e Thorough documentation helps prioritize and remediate risks effectively.
o Always keep information accurate, actionable, and updated as the issue evolves.
® Include enough context for technical and non-technical stakeholders.

o Store documents in a secure, access-controlled location.



	In-depth Weaknesses Documentation
	1. Weakness Overview
	2. Description
	3. Technical Details
	4. Proof of Concept (PoC)
	5. Impact
	6. Mitigation & Recommendations
	7. References
	Important Notes


