

Analysis and Interpretation

Overview

The study aimed to evaluate the effectiveness of the new teaching methodology on student performance in mathematics. Data was collected from two groups of students: those taught using conventional methods (Control Group) and those taught using the new methodology (Experimental Group).

Data Analysis

Scores were analyzed using both descriptive and inferential statistics. The control group had an average score of 72.5 with a standard deviation of 8.3, whereas the experimental group achieved an average score of 82.1 with a standard deviation of 6.9.

An independent samples t-test was performed to determine if the difference in means is statistically significant. The results indicated a *p*-value of 0.004, which is below the 0.05 significance threshold.

Interpretation

The higher mean score for the experimental group suggests that the new methodology had a positive impact on student achievement. The statistical analysis confirms that this difference is significant, indicating that the observed improvements are unlikely to be due to chance.

Qualitative feedback from students also supported these findings, with many participants noting increased engagement and understanding of mathematical concepts.

Conclusions

Based on the data, it can be concluded that the new teaching approach is more effective in improving student mathematics performance than conventional methods. Further research could explore its applicability in other subject areas.

Important Notes

- Clearly distinguish between the analysis (what data shows) and interpretation (what it means).
- Use appropriate statistical tests and report findings transparently.
- Contextualize statistical results with qualitative insights when possible.
- Ensure conclusions are directly supported by the presented data.
- Avoid overgeneralization beyond the scope of the study.