
Merkle Tree Hash Documentation Format

1. Document Overview
This document describes the Merkle Tree Hashing structure and details the processes, parameters, and verification
steps required for its implementation.

2. Version Information

Version Date Author Description

1.0 2024-06-18 Jane Doe Initial version

3. Merkle Tree Overview
A Merkle tree is a binary tree in which every leaf node is a hash of a data block, and every non-leaf node is a hash of
its child nodes. It enables efficient and secure verification of large datasets.

4. Hash Function
Algorithm: SHA-256

Input encoding: UTF-8 (unless specified otherwise)

5. Merkle Tree Construction
1. Hash each data item to form the leaf nodes of the tree.
2. Pair leaf nodes and hash each pair to form parent nodes.
3. If a layer has an odd number of nodes, duplicate the last node before hashing.
4. Repeat until a single root hash remains.

Example

Data Items: [D1, D2, D3, D4]
Step 1. Leaf Hashes:
 H1 = SHA256(D1)
 H2 = SHA256(D2)
 H3 = SHA256(D3)
 H4 = SHA256(D4)
Step 2. Internal Nodes:
 H12 = SHA256(H1 + H2)
 H34 = SHA256(H3 + H4)
Step 3. Root:
 Root = SHA256(H12 + H34)

6. Merkle Proof (Verification)
1. Provide the list of hashes (Merkle proof) required to verify the inclusion of a specific leaf.
2. Hash up the tree combining the proof nodes as per level direction (left/right pairing).
3. Check if the computed root equals the known Merkle root.

Example Merkle Proof Format

{
 "leaf": "D3",
 "leaf_hash": "H3",
 "proof": ["H4", "H12"],
 "root": "Root"
}

7. Document Fields

Field Type Description

version string Document versioning

hash_algorithm string Name of the hash function used

root_hash string Merkle root hash value

leaf_hashes array Hashes of original data items

proof array Merkle proof hashes for verification

8. Sample JSON Format

{
 "version": "1.0",
 "hash_algorithm": "SHA-256",
 "data": ["D1", "D2", "D3", "D4"],
 "leaf_hashes": ["H1", "H2", "H3", "H4"],
 "root_hash": "Root",
 "proof": ["H4", "H12"]
}

Important Notes
Ensure the hash algorithm is clearly specified and consistently applied.
Duplicating the last node for odd layers ensures a balanced tree.
Merkle proof should include all necessary hashes for verification up to the root.
All data and hashes should be encoded/serialized in a standard way for interoperability.
Document changes and version updates clearly within the format.

	Merkle Tree Hash Documentation Format
	1. Document Overview
	2. Version Information
	3. Merkle Tree Overview
	4. Hash Function
	5. Merkle Tree Construction
	Example

	6. Merkle Proof (Verification)
	Example Merkle Proof Format

	7. Document Fields
	8. Sample JSON Format
	Important Notes

